Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Emerg Infect Dis ; 30(3): 611-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407178

RESUMO

We sequenced Leishmania donovani genomes in blood samples collected in emerging foci of visceral leishmaniasis in western Nepal. We detected lineages very different from the preelimination main parasite population, including a new lineage and a rare one previously reported in eastern Nepal. Our findings underscore the need for genomic surveillance.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/genética , Leishmaniose Visceral/epidemiologia , Nepal/epidemiologia , Genômica
2.
Nat Commun ; 14(1): 8343, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102141

RESUMO

Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis and their dsRNA Leishmania virus 1. We show that parasite populations circulate in tropical rainforests and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites are geographically and ecologically more dispersed and associated with an increased prevalence, diversity and spread of viruses. Our results suggest that parasite gene flow and hybridization increased the frequency of parasite-virus symbioses, a process that may change the epidemiology of leishmaniasis in the region.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Humanos , Ecossistema , Leishmaniose Cutânea/parasitologia , Leishmania braziliensis/genética , Leishmania/genética , Peru/epidemiologia
3.
Front Cell Infect Microbiol ; 13: 1253033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790908

RESUMO

Introduction: Resistance against anti-Leishmania drugs (DR) has been studied for years, giving important insights into long-term adaptations of these parasites to drugs, through genetic modifications. However, microorganisms can also survive lethal drug exposure by entering into temporary quiescence, a phenomenon called drug tolerance (DT), which is rather unexplored in Leishmania. Methods: We studied a panel of nine Leishmania braziliensis strains highly susceptible to potassium antimonyl tartrate (PAT), exposed promastigotes to lethal PAT pressure, and compared several cellular and molecular parameters distinguishing DT from DR. Results and discussion: We demonstrated in vitro that a variable proportion of cells remained viable, showing all the criteria of DT and not of DR: i) signatures of quiescence, under drug pressure: reduced proliferation and significant decrease of rDNA transcription; ii) reversibility of the phenotype: return to low IC50 after removal of drug pressure; and iii) absence of significant genetic differences between exposed and unexposed lineages of each strain and absence of reported markers of DR. We found different levels of quiescence and DT among the different L. braziliensis strains. We provide here a new in-vitro model of drug-induced quiescence and DT in Leishmania. Research should be extended in vivo, but the current model could be further exploited to support R&D, for instance, to guide the screening of compounds to overcome the quiescence resilience of the parasite, thereby improving the therapy of leishmaniasis.


Assuntos
Leishmania braziliensis , Leishmania , Leishmaniose Cutânea , Humanos , Leishmania braziliensis/genética , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia
4.
EMBO Rep ; 24(9): e57413, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37470283

RESUMO

Aneuploidy is generally considered harmful, but in some microorganisms, it can act as an adaptive mechanism against environmental stress. Here, we use Leishmania-a protozoan parasite with remarkable genome plasticity-to study the early steps of aneuploidy evolution under high drug pressure (using antimony or miltefosine as stressors). By combining single-cell genomics, lineage tracing with cellular barcodes, and longitudinal genome characterization, we reveal that aneuploidy changes under antimony pressure result from polyclonal selection of pre-existing karyotypes, complemented by further and rapid de novo alterations in chromosome copy number along evolution. In the case of miltefosine, early parasite adaptation is associated with independent point mutations in a miltefosine transporter gene, while aneuploidy changes only emerge later, upon exposure to increased drug levels. Therefore, polyclonality and genome plasticity are hallmarks of parasite adaptation, but the scenario of aneuploidy dynamics depends on the nature and strength of the environmental stress as well as on the existence of other pre-adaptive mechanisms.


Assuntos
Leishmania , Humanos , Leishmania/genética , Antimônio , Cromossomos , Aneuploidia
5.
Front Cell Infect Microbiol ; 13: 1147998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153154

RESUMO

Leishmania aethiopica is a zoonotic Old World parasite transmitted by Phlebotomine sand flies and causing cutaneous leishmaniasis in Ethiopia and Kenya. Despite a range of clinical manifestations and a high prevalence of treatment failure, L. aethiopica is one of the most neglected species of the Leishmania genus in terms of scientific attention. Here, we explored the genome diversity of L. aethiopica by analyzing the genomes of twenty isolates from Ethiopia. Phylogenomic analyses identified two strains as interspecific hybrids involving L. aethiopica as one parent and L. donovani and L. tropica respectively as the other parent. High levels of genome-wide heterozygosity suggest that these two hybrids are equivalent to F1 progeny that propagated mitotically since the initial hybridization event. Analyses of allelic read depths further revealed that the L. aethiopica - L. tropica hybrid was diploid and the L. aethiopica - L. donovani hybrid was triploid, as has been described for other interspecific Leishmania hybrids. When focusing on L. aethiopica, we show that this species is genetically highly diverse and consists of both asexually evolving strains and groups of recombining parasites. A remarkable observation is that some L. aethiopica strains showed an extensive loss of heterozygosity across large regions of the nuclear genome, which likely arose from gene conversion/mitotic recombination. Hence, our prospection of L. aethiopica genomics revealed new insights into the genomic consequences of both meiotic and mitotic recombination in Leishmania.


Assuntos
Leishmania , Leishmaniose Cutânea , Psychodidae , Animais , Leishmania/genética , Leishmaniose Cutânea/parasitologia , Psychodidae/parasitologia , Filogenia , Hibridização de Ácido Nucleico
6.
Emerg Infect Dis ; 29(5): 1076-1078, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081624

RESUMO

We discovered a hybrid Leishmania parasite in Costa Rica that is genetically similar to hybrids from Panama. Genome analyses demonstrated the hybrid is triploid and identified L. braziliensis and L. guyanensis-related strains as parents. Our findings highlight the existence of poorly sampled Leishmania (Viannia) variants infectious to humans.


Assuntos
Leishmania , Leishmaniose Cutânea , Triploidia , Animais , Humanos , Leishmania/genética , Leishmaniose Cutânea/parasitologia , Parasitos , Genômica
7.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993291

RESUMO

Viruses are the most abundant biological entities on Earth and play a significant role in the evolution of many organisms and ecosystems. In pathogenic protozoa, the presence of endosymbiotic viruses has been linked to an increased risk of treatment failure and severe clinical outcome. Here, we studied the molecular epidemiology of the zoonotic disease cutaneous leishmaniasis in Peru and Bolivia through a joint evolutionary analysis of Leishmania braziliensis parasites and their endosymbiotic Leishmania RNA virus. We show that parasite populations circulate in isolated pockets of suitable habitat and are associated with single viral lineages that appear in low prevalence. In contrast, groups of hybrid parasites were geographically and ecologically dispersed, and commonly infected from a pool of genetically diverse viruses. Our results suggest that parasite hybridization, likely due to increased human migration and ecological perturbations, increased the frequency of endosymbiotic interactions known to play a key role in disease severity.

8.
Trends Parasitol ; 39(4): 251-259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803859

RESUMO

Treatment failure (TF) jeopardizes the management of parasitic diseases, including leishmaniasis. From the parasite's point of view, drug resistance (DR) is generally considered as central to TF. However, the link between TF and DR, as measured by in vitro drug susceptibility assays, is unclear, some studies revealing an association between treatment outcome and drug susceptibility, others not. Here we address three fundamental questions aiming to shed light on these ambiguities. First, are the right assays being used to measure DR? Second, are the parasites studied, which are generally those that adapt to in vitro culture, actually appropriate? Finally, are other parasite factors - such as the development of quiescent forms that are recalcitrant to drugs - responsible for TF without DR?


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Resistência a Medicamentos
9.
PLoS Pathog ; 18(9): e1010848, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36149920

RESUMO

Aneuploidy causes system-wide disruptions in the stochiometric balances of transcripts, proteins, and metabolites, often resulting in detrimental effects for the organism. The protozoan parasite Leishmania has an unusually high tolerance for aneuploidy, but the molecular and functional consequences for the pathogen remain poorly understood. Here, we addressed this question in vitro and present the first integrated analysis of the genome, transcriptome, proteome, and metabolome of highly aneuploid Leishmania donovani strains. Our analyses unambiguously establish that aneuploidy in Leishmania proportionally impacts the average transcript- and protein abundance levels of affected chromosomes, ultimately correlating with the degree of metabolic differences between closely related aneuploid strains. This proportionality was present in both proliferative and non-proliferative in vitro promastigotes. However, as in other Eukaryotes, we observed attenuation of dosage effects for protein complex subunits and in addition, non-cytoplasmic proteins. Differentially expressed transcripts and proteins between aneuploid Leishmania strains also originated from non-aneuploid chromosomes. At protein level, these were enriched for proteins involved in protein metabolism, such as chaperones and chaperonins, peptidases, and heat-shock proteins. In conclusion, our results further support the view that aneuploidy in Leishmania can be adaptive. Additionally, we believe that the high karyotype diversity in vitro and absence of classical transcriptional regulation make Leishmania an attractive model to study processes of protein homeostasis in the context of aneuploidy and beyond.


Assuntos
Leishmania donovani , Proteoma , Aneuploidia , Proteínas de Choque Térmico/genética , Humanos , Cariótipo , Leishmania donovani/genética , Peptídeo Hidrolases/genética , Proteoma/genética
10.
mBio ; 13(1): e0326421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012338

RESUMO

The implementation of prospective drug resistance (DR) studies in the research-and-development (R&D) pipeline is a common practice for many infectious diseases but not for neglected tropical diseases (NTDs). Here, we explored and demonstrated the importance of this approach using as paradigms Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GlaxoSmithKline (GSK) "Leishbox" to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at the genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross-resistance to these drugs, suggesting a new and unique mechanism. By whole-genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at the highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/reduced susceptibility of L. donovani to TCMDC-143345. IMPORTANCE Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases but not for NTDs. Here, using Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK Leishbox to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1-like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.


Assuntos
Antiprotozoários , Resistência a Medicamentos , Dinamina I , Leishmania donovani , Leishmaniose Visceral , Humanos , Antiprotozoários/imunologia , Dinamina I/genética , Dinamina I/imunologia , Genômica , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmania donovani/parasitologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Filogenia , Estudos Retrospectivos , Resistência a Medicamentos/genética , Resistência a Medicamentos/imunologia
11.
Microorganisms ; 10(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35056546

RESUMO

Microorganisms can adopt a quiescent physiological condition which acts as a survival strategy under unfavorable conditions. Quiescent cells are characterized by slow or non-proliferation and a deep downregulation of processes related to biosynthesis. Although quiescence has been described mostly in bacteria, this survival skill is widespread, including in eukaryotic microorganisms. In Leishmania, a digenetic parasitic protozoan that causes a major infectious disease, quiescence has been demonstrated, but the molecular and metabolic features enabling its maintenance are unknown. Here, we quantified the transcriptome and metabolome of Leishmania promastigotes and amastigotes where quiescence was induced in vitro either, through drug pressure or by stationary phase. Quiescent cells have a global and coordinated reduction in overall transcription, with levels dropping to as low as 0.4% of those in proliferating cells. However, a subset of transcripts did not follow this trend and were relatively upregulated in quiescent populations, including those encoding membrane components, such as amastins and GP63, or processes like autophagy. The metabolome followed a similar trend of overall downregulation albeit to a lesser magnitude than the transcriptome. It is noteworthy that among the commonly upregulated metabolites were those involved in carbon sources as an alternative to glucose. This first integrated two omics layers afford novel insight into cell regulation and show commonly modulated features across stimuli and stages.

12.
Nucleic Acids Res ; 50(1): 293-305, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893872

RESUMO

Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA), might have important evolutionary and functional implications but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two clonal populations of Leishmania promastigotes representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations, affecting a defined subset of chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.


Assuntos
Aneuploidia , Evolução Molecular , Leishmania donovani/genética , Mosaicismo , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Genoma de Protozoário
13.
Front Cell Infect Microbiol ; 11: 768830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912730

RESUMO

The extent of susceptibility towards miltefosine (Mil), amphotericin B (AmpB), and paromomycin (Paro) was measured among 19 clinical isolates of Leishmania donovani (LD). Thirteen of these clinical isolates were reported to exhibit low susceptibility towards sodium stibogluconate (SSG-R), while six of them were highly susceptible (SSG-S). The degree of clearance of amastigotes (EC50) for these predefined SSG-R- and SSG-S-infected macrophages was determined against Mil, AmpB, and Paro. Two out of the 13 SSG-R isolates (BHU575 and BHU814) showed low susceptibility towards all three drugs studied, while the rest of the 11 SSG-R isolates showed varying degrees of susceptibility either towards none or only towards individual drugs. Interestingly, all the SSG-S isolates showed high susceptibility towards Mil/AmpB/Paro. The total intracellular non-protein thiol content of the LD promastigotes, which have been previously reported to be positively co-related with EC50 towards SSG, was found to be independent from the degree of susceptibility towards Mil/AmpB/Paro. Impedance spectra analysis, which quantifies membrane resistance, revealed lower impedimetric values for all those isolates exhibiting low efficacy to Mil (Mil-R). Our analysis points out that while non-protein thiol content can be an attribute of SSG-R, lower impedimetric values can be linked with lower Mil susceptibility, although neither of these parameters seems to get influenced by the degree of susceptibility towards AmpB/Paro. Finally, a correlation analysis with established biological methods suggests that impedance spectral analysis can be used for the accurate determination of lower Mil susceptibility among LD isolates, which is further validated in the LD-infected in vivo hamster model.


Assuntos
Antiprotozoários , Leishmania donovani , Preparações Farmacêuticas , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Cricetinae , Resistência a Medicamentos , Fosforilcolina/análogos & derivados
14.
Parasit Vectors ; 14(1): 563, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727965

RESUMO

BACKGROUND: The onchocerciasis focus surrounding the lower Mbam and Sanaga rivers, where Onchocerca volvulus is transmitted by Simulium damnosum s.l. (Diptera: Simuliidae), was historically the largest in the southern regions of Cameroon. Annual community-directed treatment with ivermectin (CDTI) has been taking place since 2000, but recent studies have shown that new infections are occurring in children. We aimed to investigate blackfly biting and O. volvulus transmission rates along the lower Mbam river 16 years after the formal onset of annual CDTI. METHODS: Black flies were collected for three consecutive days each month between July 2016 and June 2017 at two riverside villages and two inland sites situated 4.9 km and 7.9 km from the riverside. Specimens collected at each site were dissected on one of the three collection days each month to estimate parity rates and O. volvulus infection rates, while the remaining samples were preserved for pool screening. RESULTS: In total, 93,573 S. damnosum s.l. black flies were recorded biting humans and 9281 were dissected. Annual biting rates of up to 606,370 were estimated at the riverside, decreasing to 20,540 at 7.9 km, while, based on dissections, annual transmission potentials of up to 4488 were estimated at the riverside, decreasing to 102 and 0 at 4.9 km and 7.9 km, respectively. However, pool screening showed evidence of infection in black flies at the furthest distance from the river. Results of both methods demonstrated the percentage of infective flies to be relatively low (0.10-0.36%), but above the WHO threshold for interruption of transmission. In addition, a small number of larvae collected during the dry season revealed the presence of Simulium squamosum E. This is the first time S. squamosum E has been found east of Lake Volta in Ghana, but our material was chromosomally distinctive, and we call it S. squamosum E2. CONCLUSIONS: Relatively low O. volvulus infection rates appear to be offset by extremely high densities of biting black flies which are sustaining transmission along the banks of the lower Mbam river.


Assuntos
Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Ivermectina/farmacologia , Onchocerca volvulus/efeitos dos fármacos , Oncocercose/transmissão , Simuliidae/efeitos dos fármacos , Animais , Camarões/epidemiologia , Feminino , Humanos , Controle de Insetos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Masculino , Onchocerca volvulus/genética , Onchocerca volvulus/fisiologia , Oncocercose/epidemiologia , Oncocercose/parasitologia , Saúde da População Rural , Estações do Ano , Simuliidae/genética , Simuliidae/parasitologia , Simuliidae/fisiologia
15.
J Med Chem ; 64(16): 12152-12162, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34355566

RESUMO

Leishmaniasis, a disease caused by protozoa of the Leishmania species, afflicts roughly 12 million individuals worldwide. Most existing drugs for leishmaniasis are toxic, expensive, difficult to administer, and subject to drug resistance. We report a new class of antileishmanial leads, the 3-arylquinolines, that potently block proliferation of the intramacrophage amastigote form of Leishmania parasites with good selectivity relative to the host macrophages. Early lead 34 was rapidly acting and possessed good potency against L. mexicana (EC50 = 120 nM), 30-fold selectivity for the parasite relative to the macrophage (EC50 = 3.7 µM), and also blocked proliferation of Leishmania donovani parasites resistant to antimonial drugs. Finally, another early lead, 27, which exhibited reasonable in vivo tolerability, impaired disease progression during the dosing period in a murine model of cutaneous leishmaniasis. These results suggest that the arylquinolines provide a fruitful departure point for the development of new antileishmanial drugs.


Assuntos
Leishmaniose Cutânea/tratamento farmacológico , Quinolinas/uso terapêutico , Tripanossomicidas/uso terapêutico , Animais , Feminino , Leishmania/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/metabolismo , Quinolinas/farmacocinética , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacocinética
18.
Genes (Basel) ; 11(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007987

RESUMO

The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR-Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR-Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite's biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.


Assuntos
Sistemas CRISPR-Cas , Endopeptidase Clp/genética , Proteínas de Choque Térmico/genética , Leishmania braziliensis/genética , Proteínas de Protozoários/genética , Genética Reversa , Endopeptidase Clp/metabolismo , Edição de Genes , Marcação de Genes , Genes de Protozoários , Proteínas de Choque Térmico/metabolismo , Leishmania braziliensis/fisiologia , Leishmania major/genética , Leishmania major/fisiologia , Mutação , Reação em Cadeia da Polimerase , Proteínas de Protozoários/metabolismo , Termotolerância
19.
Virol J ; 17(1): 142, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993724

RESUMO

Infections caused by protozoan parasites burden the world with huge costs in terms of human and animal health. Most parasitic diseases caused by protozoans are neglected, particularly those associated with poverty and tropical countries, but the paucity of drug treatments and vaccines combined with increasing problems of drug resistance are becoming major concerns for their control and eradication. In this climate, the discovery/repurposing of new drugs and increasing effort in vaccine development should be supplemented with an exploration of new alternative/synergic treatment strategies. Viruses, either native or engineered, have been employed successfully as highly effective and selective therapeutic approaches to treat cancer (oncolytic viruses) and antibiotic-resistant bacterial diseases (phage therapy). Increasing evidence is accumulating that many protozoan, but also helminth, parasites harbour a range of different classes of viruses that are mostly absent from humans. Although some of these viruses appear to have no effect on their parasite hosts, others either have a clear direct negative impact on the parasite or may, in fact, contribute to the virulence of parasites for humans. This review will focus mainly on the viruses identified in protozoan parasites that are of medical importance. Inspired and informed by the experience gained from the application of oncolytic virus- and phage-therapy, rationally-driven strategies to employ these viruses successfully against parasitic diseases will be presented and discussed in the light of the current knowledge of the virus biology and the complex interplay between the viruses, the parasite hosts and the human host. We also highlight knowledge gaps that should be addressed to advance the potential of virotherapy against parasitic diseases.


Assuntos
Interações Hospedeiro-Parasita , Terapia Viral Oncolítica/métodos , Parasitos/virologia , Doenças Parasitárias/terapia , Terapia por Fagos/métodos , Animais , Humanos , Terapia Viral Oncolítica/normas , Terapia por Fagos/normas
20.
Proc Natl Acad Sci U S A ; 117(40): 25159-25168, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958676

RESUMO

The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host-parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles-but not maxicircles-show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.


Assuntos
Genoma Mitocondrial/genética , Interações Hospedeiro-Parasita/genética , Leishmania braziliensis/genética , Leishmaniose Cutânea/genética , Ecossistema , Florestas , Especiação Genética , Humanos , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Peru/epidemiologia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...